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This note uses the normal form bisimulation theory for
recursively typed call-by-push-value (CBPV) [1] to prove a
“syntactic minimal invariance” result.

e SOREN: NEED TO CHANGE FUNCTION APPLI-
CATION SYNTAX TO OPERAND-FIRST EVERY-
WHERE

Given closed types A, B, we define the function types:

fleéfA—>F‘A7 ETdéfUEHE,

and closed terms ¢ 74 : At and ¢ ~§ : B'. More gen-
erally, to deal with recursive types, we define in Figure , by
structural induction on A and B, open terms:

T AR 4t AN, TR At p: BT

— — o —
whereI' = X : UAT,Y : UB' (we take the liberty to use
X and Y as term identifiers in I', 7 4, 7 p and as type

identifiers in A agd §); A and B are clj)sed types; A and B
are open types: X,Y F¥ Atype, X,Y F° B type; and [T']

—

denotes the type substitution [4/X, B/Y]
o0 v A
Proposition 1. v 1 = 1 4[74/X, 7B/Y] and
0 v
’YCQ[F] = ’ch“,g[’yA/Xa VB/Y].
Proof. By structural induction on A and B. O
So, for closed recursive types Rec X. A, RecY . B,

7Z,[RecX.A/X] = 7%:(RecX.A),A[7;e°X»A/X],
VE[RecX.Q/X] = VY:(RecY.B),B [Yreey BJY].
Observe that
x:UBFvip(),nil ~" return z¥ nil

z:UFAF A%, (2), K ~* forcex, K*
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Yr.up = AT.return thunk(yp 5 (7))
PY%)‘,I = )\< ><>

VP, Ay x Ay = MT1, T2).AE 4, (T1)
tO Y11 4, (z2)
to yo. return (yi,ys)

’yf{ziel& = M{(i,xz). A, () to y.return (i,y) bicr
r,x;, = force X;
VP recx.a = recX. Afoldw. WF,X:U(RecX.A)[F]T,A(x)
to y.return foldy
V1, Fpa = Ar. forcez to y. ¢ 4(y)

Moamp = AT MY AY)
to z.7f p(thunk(force z(2)))

Ve, = AT Mi % 4, (thunk(m;(force w))) bier
1y =forceY,
WF‘,RecX.B = reCX. Ax. fold

VTY:U (RecY B[], B
(thunk(unfold(forcez)))

Figure 1. Definitions of ¢ , and ¢ 5



where 2t & thunk(y%(z)) and K* o y. 4 (y): K,

provided z is of type UB and K is from type F'A. More
generally:

Lemma2. Ifi:UB F p(Z): AandT | FAF* K : FC
then

—

—
I,Z:UBF 4 (p(¥)), K ~* return p(xt), K

and, ifT' "V : UB, a_c’:U—A>|§|—k q(#;K) : D, and
[ |FCH: K : D,

T2 :UA A5 (V),q(# K) ~* force V,q(ah; K¥).
Proof. By structural induction on p and q. O

Theorem 3 (Syntactic minimal invariance). For all closed
value types A and closed computation types B,

F¢ 9% =~ Az.return z : A,
F¢ 5 ~ Az. forcez: B
Proof. The equations follow from
z: AF°~%(2) =~ return z : FA,
2 : UBF° force 2t = force 2 . B,

which we prove by the exhibiting the following normal form
bisimulation R which relates

Z: U_A F 44 (p(Z)),nil R p(Z),nil: FA
7 U—ﬁ),z : UB | force 2t q(if;nil) R
force z,q(¢;nil) : FC

— —
whenever ¥ : UA F¥ p(Z) : Aand§ : UB | B ¥
¢(¢;nil) : FC. By Lemma 2, R is a normal form bisimu-
lation. O
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A  Proofs

Here are some of the cases in the proof of Lemma 2.
Case A = A; x As. Then there exist py, &1, Bl, P2, To, and 32 such that

for i €

We use the abbreviations M[Vi,Va] =
Y4, (V2) to ya. return (V1,y2) in the following calculation.
Va(p(E)), K
Tas p(7):K
Mz, 22). M 21, 23], (p1(Z1), p2(22)): K
M p1(Z1), p2(72)], K
v, (P1(Z1)), toyi. Ny, Vo] K
return pl(x:{) to y1. N[y, p2 (& 2)]_} K
Th, (P2(72)), to . return (p1(2}), y2):
return po(z}), to . return (py (z}), yo)::
return (py(a}), pa(ah)), K
return (p(zt)) K

Case A = Y;c1A;. Then there exist i € I and p’ such that p(Z) =

Case B = Il;c;B;. Then there exist « € I and ¢’ such that ¢(&

{1,2}.

7a(p(7)),

Vs

M (i, ). v}, (7) to y. return (i,y)}
VA, (p’(f)) oy.return (i,y),
W @),

return p/( )_’

(1)),

)

T
return (i, p
return p(xt

15(V),

M. V. B, (thunk(m;(force V))) bier,
M. ’yf;’;(thunk(m(force ) bier,

VT B, (tﬁmk(m(force ),
force thunk(m;(forceV)),
mi(force V),

forceV,

forceV,

T = fla _’27
B:Bth
(p1 1), p2(Z2)),

(f)
<Z p'(@):K

i€l

to y.return (i,
to y. return (i,
K
K

; K)
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(i,p/(Z)) and & : UB F* p/

I(5. ¢ . ITA k o
(% K)and X : UA | B F" ¢

Nlyi, Vo] and N[Vi, V3]
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R

Case B = RecY.By. Then there exists ¢’ such that ¢(&; K) = unfold:¢'(Z; K) and X : U—A | B FF ¢ (T, K)
where B & By[BJy]. Observe that

vp = recY. Az.fold "y ;i p, (thunk(unfold(forcez)))

(Z;K) : FC.

def

: FC,



and vy 5t g, [thunk(Y5)/y] = 5, and, if L is a stack from type BT,

¥g, L ~* Azx. foldv% (thunk(unfold(forcex))), L (1)
15(V), q(T; K) ~
Vs Vig(Z; K) ~* (1)
Az.foldv§, (thunk(unfold(forcex))), V:q(Z;K) ~
foldv%, (thunk(unfold(force V))), q(7; K) =
fold~, (thunk(unfold(force V))), unfold : ¢(T; K) ~
7% (thunk(unfold(force V))), q(Z; K) ~+* by the LH.
force thunk(unfold(forceV)), q’(x_i; K*) ~*
unfold(force V), q’(x_i; K*) ~o
forceV, unfold::q’(a;ﬂ%t; KY) =
forceV, Q(SU} Ki)



